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Abstract
It is shown that the generalized discrete nonlinear Schrödinger equation in
a small amplitude approximation is reduced to a number of basic nonlinear
integrable equations, such as the KdV, mKdV and KdV(2) equations, or to the
fifth-order KdV equation, depending on the values of the parameters. In the
dispersionless limit these equations lead to the wave-breaking phenomenon for
general enough initial conditions, and, after taking into account small dispersion
effects, result in the formation of dissipationless shock waves. The Whitham
theory of modulations of nonlinear waves is used for an analytical description
of such waves. Numerical simulations are used to obtain diferent types of
bright and dark shocks.

PACS numbers: 47.40.Nm, 02.30.Ik, 05.45.Yv

1. Introduction

Dissipationless shock waves have been experimentally observed or their existence has been
theoretically predicted in various nonlinear media such as water [1], plasma [2], optical fibres
[3] and lattices [4]. In contrast to usual dissipative shocks where the combined action of
nonlinear and dissipation effects leads to sharp jumps of the wave intensity, accompanied by
abrupt changes of other wave characteristics, in dissipationless shocks, the viscosity effect is
negligibly small compared to the dispersive one, and, instead of intensity jumps, the combined
action of nonlinear and dispersion effects leads to the formation of an oscillatory wave region
(for a review see, e.g., [5]). Since the intrinsic discreteness of a solid state system gives
origin to strong dispersion, which can dominate dissipative effects in wave phenomena, it is
of considerable interest to investigate details of the formation and dynamics of dissipationless
shocks in lattices.
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As a model, in the present paper we choose the generalized discrete nonlinear Schrödinger
(GDNLS) equation

iq̇n + (1 − η|qn|2)(qn+1 + qn−1 − 2qn) + 2(ρ2 − |qn|2)qn = 0 (1)

introduced by Salerno [7, 8]. This equation represents a generalization of the simple tight-
binding linear Schrödinger model for the dynamics of quasiparticules in a molecular crystal.
Also it appears as a model for an electrical lattice [9]. An important mathematical property
of equation (1) is that it provides a one-parametric transition between an integrable Ablowitz–
Ladik (AL) model and the so-called discrete nonlinear Schrödinger (DNLS) equation (η = 1
and η = 0, respectively).

In the present paper, we show that equation (1) can be linked in the small amplitude
limit, not only to the Korteweg–de Vries (KdV) equation (the case explored in [10, 11]) but
also to other integrable models: the modified KdV (mKdV) and KdV(2) equations as well as
the fifth-order KdV equation (the last one not being integrable). It is worth emphasizing here
that to the best of the authors’ knowledge this is the first example of a ‘physical’ significance
of the KdV(2) model, considered so far as a purely mathematical object interesting from the
point of view of integrable systems.

Obviously, equation (1) has a constant amplitude solution qn = ρ. In a small amplitude,
|a| � ρ, and a long wave, when the discrete site index n can be replaced by a continuous
coordinate x limit, the evolution of small amplitude perturbations against this constant
background, i.e. of excitations of the type

x = nh qn(t) = q(x, t) (2)

q(x, t) = (ρ + a(x, t)) exp(−iφ(x, t)) (3)

where we will assume that the lattice parameter h = 1, is governed by the KdV equation for
the amplitude a(x, t) (see [10, 11]):

at − 2(3 − 4ηρ2)√
1 − ηρ2

aax +

√
1 − ηρ2

12ρ
[3(1 − ηρ2) − ρ2]axxx = 0 (4)

which is written in the reference system moving with velocity 2ρ
√

1 − ηρ2 of linear waves
in the dispersionless limit. It is well known (see, e.g., [1]) that if the initial pulse is smooth
enough, so that the nonlinear term dominates the dispersive one at the initial stage of the
evolution, then the dissipationless shock wave develops. The theory of such waves, described
by the KdV equation, is well developed (see, e.g., [5]). The existence of the respective shock
waves for model (1) has been predicted analytically and observed in numerical simulations in
[10, 11]. Moreover, as shown in [12] a discrete nonlinear Schrödinger equation of a rather
general type can bear ‘KdV-type’ shock waves. In this context the results presented in the
present paper although being mostly related to model (1) display some general characteristic
features of lattices of the nonlinear Schrödinger type.

The coefficients of equation (4), namely

CNL = −2(3 − 4ηρ2)√
1 − ηρ2

(5)

and

CDI =
√

1 − ηρ2

12ρ
[3(1 − ηρ2) − ρ2] (6)

below referred to as nonlinearity and dispersion respectively, depend on two parameters η and
ρ and can vanish at a special choice of these parameters. Then one has to consider corrections
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to the KdV equation. This is the situation studied in the present paper. More specifically, in
section 2 we derive evolution equations at the small-amplitude limit for the whole region of
parameters η and ρ and show that for CNL = 0 the GDNLS equation reduces to the mKdV
equation (section 2.2), for CDI = 0 to a nonlinear equation with dispersion of the fifth order
(section 2.3), and at the point where both CNL = 0 and CDI = 0 to the KdV(2) equation
(section 2.4). As we mentioned above, the last result sheds some new light on the nature
of higher equations of the KdV hierarchy—they arise as small amplitude approximations to
completely integrable equations, if lower orders of nonlinear and dispersion contributions
vanish at some values of the parameters of the equation under consideration.

The next aim of the paper—developing a theory of shock waves—is realized in section 3
for the mKdV (section 3.1) and KdV(2) (section 3.2) equations, analogous to those developed
earlier for the KdV equation, where we discuss the possibility of the existence of shock waves.
The theory developed in this section permits one to describe in detail the behaviour of shocks
after the wave-breaking point for different values of the parameters entering equation (1).

Finally in section 4, we perform a numerical analysis of the GDNLS equation showing
different behaviour of the dynamics of shocks depending on the value of parameter ρ. The
goal of the numerical simulations is to show that changing parameter ρ along a line η = const,
one can obtain different types of shock waves corroborating the description obtained from the
small-amplitude multiscale expansion.

The results are summarized in section 5.

2. Small amplitude approximation

Using ansatz (3), we rewrite equation (1) as

iat + (ρ + a)φt − 4ρ2a − 6ρa2 + [1 − η(ρ + a)2]

×{(ρ + a(x + 1, t)) exp[−i(φ(x + 1, t) − φ(x, t))]

+ (ρ + a(x − 1, t)) exp[−i(φ(x − 1, t) − φ(x, t))]} = 0 (7)

i.e. where |a| � ρ and |φ(x + 1, t) − φ(x, t)| � 1. In the linear approximation, this equation
yields for the harmonic wave solution

a(x, t) ∝ exp[i(Kx − �t)] φ(x, t) ∝ exp[i(Kx − �t)]

the dispersion relation [10, 11]

� = ±4
√

1 − ηρ2 sin
K

2

[
ρ2 + (1 − ηρ2) sin2 K

2

]1/2

(8)

∼= ±2ρ
√

1 − ηρ2K

[
1 +

3(1 − ηρ2) − ρ2

24ρ2
K2 + O(K4)

]
(9)

where the expansion in powers of K corresponds to taking into account different orders of the
dispersion effects. In the lowest order, when the dispersion effects are neglected, linear waves
propagate with a constant velocity

v = ±2ρ
√

1 − ηρ2. (10)

To evaluate the contribution of small (for |a| � ρ) nonlinear effects, it is convenient to
introduce a small parameter ε ∼ a and pass to such scaled variables in which nonlinear and
dispersion effects make contributions of the same order of magnitude to the evolution of the
wave. Since the choice of these scaled variables depends on the values of the parameters ρ

and η, we consider the different relevant cases separately.
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2.1. KdV equation

For the sake of completeness we start by reproducing briefly some results of [11]. We expand
a(x ± 1, t) and φ(x ± 1, t) into Taylor series around x, introduce scaling indices {α, β, γ }

a ∼ ε t ∼ ε−α x ∼ ε−β φ ∼ εγ (11)

and demand that in the reference frame moving with velocity (10) of linear waves the lowest
quadratic nonlinearity has the same order of magnitude as the second term in expansion (8) of
the dispersion relation, a ∼ φx, at ∼ aax ∼ axxx , which yields

{
α = 3

2 , β = γ = 1
2

}
. Thus,

the scaled variables have the form

τ = ε3/2t ξ = ε1/2(x + vt) v = ±2ρ
√

1 − ηρ2 (12)

and a(x, t) and φ(x, t) should be looked for in the form of expansions

a = εa(1) + ε2a(2) + ε3a(3) + · · ·
φ = ε1/2φ(1) + ε3/2φ(2) + ε5/2φ(2) + · · · . (13)

Then in the lowest order in the expansion of equation (7) in powers of ε we obtain the
relationship

φ
(1)
ξ = 4ρ

v
a(1) (14)

where we have chosen the upper sign of v in (12). Note that this first order gives us a relation
between the two unknown variables a(1) and φ(1) which will be useful to obtain at second order
an equation for the only variable a(1). In the next order one arrives at the KdV equation (4)
written in terms of the scaled variables, i.e. with a, t and x substituted by a(1), τ and ξ ,
respectively:

a
(1)
t − 2(3 − 4ηρ2)√

1 − ηρ2
a(1)a(1)

x +

√
1 − ηρ2

12ρ
[3(1 − ηρ2) − ρ2]a(1)

xxx = 0. (15)

The nonlinearity (5) changes sign for

η = 3

4ρ2
(16)

and the dispersion term changes sign for

η = 1

ρ2
− 1

3
. (17)

Hence, there can be either bright solitons against a background (a(x, t) > 0) or dark solitons
(a(x, t) < 0) of the GDNLS equation approximated by the KdV equation (4) (see figure 1).
In both cases it is possible to pass to a new dependent variable u defined as

a(1) = − 1 − ηρ2

12ρ − 16ηρ3
[3(1 − ηρ2) − ρ2]u (18)

and change time as t →
√

1−ηρ2

12ρ
[3(1 − ηρ2) − ρ2]t such that the KdV equation takes its

standard form

ut + 6uux + uxxx = 0. (19)
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Figure 1. Diagram showing different continuous limits of the GDNLS equation. The abbreviations
are explained in the text.

2.2. mKdV equation

Exactly on the line (16) the nonlinearity vanishes: CNL = 0. This means that the dispersion
can no longer be balanced by the quadratic nonlinearity. Hence, one may expect that the
modified KdV (mKdV) equation with cubic nonlinearity arises for values of ρ and η related
by (16).

In order to check whether those qualitative predictions are correct one has to change the
scaling. The new scaling should be chosen to take into account that the cubic nonlinearity now
must have the same order of magnitude as the dispersion axxx , i.e. a ∼ φx, at ∼ a2ax ∼ axxx .
Then, using scaling (11) we find {α = 3, β = 1, γ = 0}, so that instead of (12) we have the
following scaled variables,

τ = ε3t ξ = ε(x + vt) v = ±ρ (20)

where the value of the velocity is found by substituting (16) into (10). Now the solution is
searched for in a form of the expansion

a = εa(1) + ε2a(2) + ε3a(3) + · · · (21)

φ = φ(1) + εφ(2) + ε2φ(3) + · · · . (22)

In the lowest order of ε we obtain

φ
(1)
ξ = 4a(1) (23)

which coincides with equation (14) after the substitution of v = ρ. In the next order we get
the relationship

φ
(2)
ξ = 4a(2) +

6

ρ
a(1)2 (24)

and finally in the highest relevant order we obtain the mKdV equation

a(1)
τ +

(
4ρ +

21

ρ

)
a(1)2a

(1)
ξ +

1

32

(
1

ρ
− 4ρ

3

)
a

(1)
ξξξ = 0. (25)

Since along the line (16) we have ρ >
√

3/2, the coefficient before the dispersion term is
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always negative and hence equation (25) can be transformed into the following standard form,

ut − 6u2ux + uxxx = 0 (26)

where u is given by

a(1) = 1

4

√
4ρ2 − 3

4ρ2 + 21
u (27)

and the time variable is renormalized

t → 1

32ρ

(
1 − 4

3
ρ2

)
t (28)

i.e. time in (26) is negative.

2.3. Fifth-order KdV equation

Along the line (17), the dispersion term in (4) vanishes, CDI = 0. This means that if
initial scaling of the wave packet is chosen according to (12), (13), the balance between the
nonlinearity and dispersion is broken again, the nonlinearity becomes dominating. Such a
pulse displays steepening until the higher order dispersion starts to balance the nonlinearity.
In this case one expects the evolution equation for a(x, t) to contain quadratic nonlinear terms
and the linear dispersion term is the one with the fifth-order space derivative of a(x, t). Since
the first-order dispersion effects in equation (4) disappear, the scaling should be chosen so that
the quadratic nonlinearity has the same order of magnitude as a(V ), a ∼ φx, at ∼ aax ∼ a(V ),
which yields

{
α = 5

4 , β = 1
4 , γ = 3

4

}
, so that the scaled variables are now given by

τ = ε5/4t ξ = ε1/4(x + vt) v = ±2ρ2

√
3

(29)

where velocity v is found by substituting (17) into (10). Now the condition of cancellation of
terms in the second order demands that expansions of a and φ have the form

a = εa(1) + ε3/2a(2) + ε2a(3) + · · ·
φ = ε3/4φ(1) + ε5/4φ(2) + ε7/4φ(2) + · · · . (30)

Then in the lowest order in the expansion of equation (7) in powers of ε1/2 we get again
equation (14) where v is replaced by 2ρ2/

√
3,

φ
(1)
ξ = 2

√
3

ρ
a(1). (31)

In the next order we obtain the relationship

φ
(2)
ξ = 2

√
3

ρ
a(2) − 1

2
√

3ρ
a

(1)
ξξ (32)

and finally in the highest relevant order we arrive at the fifth-order KdV equation

a(1)
τ +

2
√

3

ρ

(
1 − 4ρ2

3

)
a(1)a

(1)
ξ +

√
3ρ2

270
a

(1)
ξξξξξ = 0. (33)

Note that here the nonlinear term can be obtained from the corresponding term in the KdV
equation (4) by the substitution of η = 1

ρ2 − 1
3 and the dispersion term reproduces the expansion

of the dispersion relation (9) at the same value of η.
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2.4. KdV(2) equation

The most interesting point corresponds to the values

η = 1 ρ =
√

3/2 (34)

when both nonlinear and dispersion coefficients vanish. Since equation (1) with η = 1
coincides with the completely integrable AL equation, in a small amplitude approximation,
it reduces again to a completely integrable equation. The KdV equation (4) with η = 1 is
meaningful for the entire interval 0 < ρ < 1 except for some vicinity of the point ρ = √

3/2.
Therefore one can suppose that at the point (34) one has to obtain the second equation of
the KdV hierarchy—KdV(2), in which the higher order nonlinear and dispersion effects play
the dominant role. In other words, now the cubic nonlinearity must be of the same order of
magnitude as a(V ), a ∼ φx, at ∼ a2ax ∼ a(V ), which yields

{
α = 5

2 , β = γ = 1
2

}
, and the

scaled variables

τ = ε5/2t ξ = ε1/2(x + vt) v = ±
√

3
2 (35)

where v is the velocity of linear waves at the point (34). The variables a(x, t) and φ(x, t)

have the same form of expansions (13) as in the KdV equation case. In the lowest order we
obtain equation (23), in the next order we get the relationship

φ
(2)
ξ = 4a(2) + 4

√
3a(1)2 − 1

3a
(2)
ξξ (36)

and in the highest relevant order we obtain the KdV(2) equation

a(1)
τ + 16

√
3a(1)2a

(1)
ξ − 4

3
a

(1)
ξ a

(1)
ξξ − 2

3
a(1)a

(1)
ξξξ +

√
3

360
a

(1)
ξξξξξ = 0. (37)

As one should expect, the main nonlinear term here coincides with that of the mKdV
equation (25) at the point (34), and the linear dispersion term with the corresponding term of
the fifth-order KdV equation (33) at the same point.

By means of replacements

a(1) = − 1
8
√

3
u τ = −30

√
3t ξ = x

equation (37) can be transformed into the standard form of the second equation of the KdV
hierarchy—the KdV(2) equation (see, e.g., [5]):

ut = 15
2 u2ux + 5uxuxx + 5

2uuxxx + 1
4u(V ). (38)

2.5. Summary of the section

Thus the GDNLS equation not even being integrable for η < 1 is intimately related,
through the small amplitude limit, to several standard integrable models: KdV, mKdV and
KdV(2) equations, which appear for different choices of the deformation parameter η and the
background amplitude. Another model appearing in the description of weak long-wavelength
excitations of the GDNLS is the fifth-order KdV equation. Physically acceptable values of η

and ρ are limited by the inequalities

0 � η � min{1, 1/ρ2} 0 < ρ < ∞. (39)

Figure 1 summarizes these results.
The completely integrable AL equation η = 1 reduces in the small amplitude

approximation either to the KdV equation, beyond some vicinity of the specific value of the
background (34), or to the KdV(2) equation at the point (34), so that approximate equations
remain completely integrable in both cases. This observation corroborates the fact that the
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property of complete integrability is preserved in the framework of the singular perturbation
scheme (see, e.g., [15]). This allows us to make a more general conjecture that higher equations
of some hierarchy may arise as approximate equations if the underlying lattice depends on
more than one parameter. This happens if at some values of the parameters of the underlying
completely integrable problem nonlinearity and, hence, dispersion of lower equations of the
hierarchy vanish. This phenomenon can be viewed as the physical meaning of the higher
equations of hierarchies of integrable equations.

3. Dissipationless shock waves

In the dispersionless limit when dispersion effects can be neglected compared with nonlinear
ones, all the above derived equations reduce in the leading approximation to the Hopf-like
equation

ut + unux = 0 (40)

where n = 1 for the KdV and fifth-order KdV equations and n = 2 for mKdV and KdV(2)
equations. It is well known (see, e.g., [5, 6]) that equation (40) with general enough initial
condition leads to the formation of a wave-breaking point after which the solution becomes a
multi-valued function of x. This means that near the wave-breaking point one cannot neglect
the dispersion effects. If we take them into account, then the multi-valued region is replaced
by the oscillatory region of the solution of the full equation. This oscillatory region is called
the dissipationless shock wave and its analytical description is the aim of this section.

The existing theory of dissipationless shock waves is effective for completely integrable
equations. Among equations derived in the preceding section, however, the fifth-order KdV
equation (33) does not belong to this class. Fortunately, just this case of zero first-order
dispersion was studied numerically in [10, 11]. We also bear in mind that the dissipationless
shock waves of the KdV equation are already described in the literature [13] (see also [5]).
Therefore we shall not consider this equation here and concentrate on the completely integrable
models mKdV and KdV(2).

The analytical approach is based on the idea that the oscillatory region of the
dissipationless shock wave can be represented as a modulated periodic solution of the equation
under consideration. If the parameters defining the solution change little on a distance of one
wavelength and during the time of the order of one period, one can distinguish two scales of
time in this problem—fast oscillations of the wave and slow change of the parameters of the
wave. Then equations which govern a slow evolution of the parameters can be averaged over
fast oscillations, which leads to the so-called Whitham equations [1] and their solution subject
to appropriate initial and boundary conditions describes the evolution of the dissipationless
shock wave. This approach was suggested in [13] and now it is well developed for the KdV
equation case (see, e.g., [5]). The results of this theory can be applied to shocks in the
GDNLS equation when it is reduced to the KdV equation (4) or (19). We shall first develop an
analogous theory for the mKdV and KdV(2) equations and then compare the results obtained
for different equations.

3.1. Dissipationless shock wave in the mKdV equation (26)

The mKdV equation corresponds to the line between bright KdV shock waves and dark KdV
shock waves. And because the mKdV equation allows the transformation u = −u, on this
line, we can expect both bright and dark shocks for the same values of the parameters η and ρ.

First we have to express a periodic solution of the mKdV equation (26) in a form
suitable for the Whitham modulation theory. Such a form is provided automatically by the
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finite-gap integration method which is used here to find the one-phase periodic solution of the
mKdV equation.

The finite-gap integration method (see, e.g., [5]) is based on the complete integrability
of the mKdV equation, following from a possibility of representing this equation as a
compatibility condition �xt = �tx of two linear systems

�x = U� �t = V� � =
(

ψ1

ψ2

)

U =
(

−iλ iu

−iu iλ

)
V =

(
A B

C −A

) (41)

A = −4iλ3 − 2iu2λ (42)

B = 4iuλ2 − 2uxλ − iuxx + 2iu3 (43)

C = −4iuλ2 − 2uxλ + iuxx − 2iu3 (44)

where λ is a free spectral parameter. The linear systems (41) have two basis solutions
�± = (

ψ±
1 , ψ±

2

)
, from which we build the so-called squared basis functions,

f = − i

2

(
ψ+

1 ψ−
2 + ψ−

1 ψ+
2

)
g = ψ+

1 ψ−
1 h = −ψ+

2 ψ−
2 . (45)

They satisfy the following linear systems,

fx = −ug − uh gx = −2uf − 2iλg hx = −2uf + 2iλh (46)

and

ft = −iCg + iBh gt = 2iBf + 2Ag ht = −2iCf − 2Ah (47)

and have the following integral,

f 2 − gh = P(λ) (48)

independent of x and t. The periodic solutions are distinguished by the condition that P(λ)

be a polynomial in λ with no zero coefficient (i.e. s1, s2, s3 �= 0) and we shall see that the
one-phase solution corresponds to the sixth degree polynomial in even powers of λ,

P(λ) =
3∏

i=1

(
λ2 − λ2

i

) = λ6 − s1λ
4 + s2λ

2 − s3. (49)

Then f, g, h, satisfying (46)–(48), should also be polynomials in λ,

f = λ3 − f1λ g = iu(λ − µ1)(λ − µ2) h = −iu(λ + µ1)(λ + µ2) (50)

where µj are new dependent variables. Substitution of (50) into (48) gives the conservation
laws (sj are constants)

2f1 + u2 = s1 f 2
1 + u2

(
µ2

1 + µ2
2

) = s2 u2µ2
1µ

2
2 = s3 (51)

and substitution into (46) and (47) yields the following important formulae:

ux = 2iu(µ1 + µ2) (52)

ut = 2(2f1 + u2)ux. (53)

From (53) and the first equation (51) we see that u depends only on the phase

u = u(θ) θ = x + 2s1t (54)
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and from (52) and the other equations (51) we find

u2
θ = u4 − 2s1u

2 ∓ 8
√

s3u + s2
1 − 4s2 ≡ Q(u) (55)

where the zeros ui of the polynomial Q(u) are related to the zeros λi of the polynomial P(λ)

by the formulae

u1 = ±(λ1 + λ2 + λ3) (56)

u2 = ±(λ1 − λ2 − λ3) (57)

u3 = ±(−λ1 + λ2 − λ3) (58)

u4 = ±(−λ1 − λ2 + λ3). (59)

If we order the zeros λi according to

λ1 > λ2 > λ3 > λ4 (60)

then for the upper choice of the sign in (55) and (56) we have

u1 > u2 > u3 > u4 (61)

and u oscillates within the interval

u3 � u � u2 (62)

where Q(u) � 0. For the lower choice of the sign in (55) and (56) we have

u1 < u2 < u3 < u4 (63)

and u oscillates within the interval

u2 � u � u3. (64)

We are interested in wave trains against a positive constant background which corresponds
to the lower choice of sign in (55) and (56). In this case equation (55) yields the periodic
solution

u(θ) = (u3 − u1)u2 − (u3 − u2)u1 sn2(
√

(u4 − u2)(u3 − u1)θ/2,m)

u3 − u1 − (u3 − u2) sn2(
√

(u4 − u2)(u3 − u1)θ/2,m)
(65)

where

m = (u3 − u2)(u4 − u1)

(u4 − u2)(u3 − u1)
= λ2

1 − λ2
2

λ2
1 − λ2

3

θ = x + 2s1t = x + 2
(
λ2

1 + λ2
2 + λ2

3

)
t. (66)

At λ2 = λ3, when m = 1, the solution (65) transforms into a soliton solution of the mKdV
equation

us(θ) = λ1 − 2
(
λ2

1 − λ2
2

)
λ1 − λ2 + 2λ2 cosh2

(
2
√

λ2
1 − λ2

2θ
) θ = x + 2

(
λ2

1 + 2λ2
2

)
t. (67)

In a modulated wave the parameters λi become slow functions of x and t. It is convenient
to introduce new variables

r1 = λ2
3 r2 = λ2

2 r3 = λ2
1 (68)

so that the Whitham equations can be written in the form (see, e.g., [5])
∂ri

∂t
+ vi(r)

∂ri

∂x
= 0 vi =

(
1 − L

∂iL
∂i

)
V i = 1, 2, 3 (69)

where V = −2(r1 + r2 + r3) is the phase velocity of the nonlinear wave (65) and

L = K(m)√
r3 − r1

m = r3 − r2

r3 − r1
(70)

is the wavelength.
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Figure 2. Formation of the multi-valued solution of the mKdV equation in the dispersionless limit
(71). The initial data correspond to the cubic curve x = −(u2 − u2

b)
3 (see equation (73)).

Now our task is to consider the solution of the mKdV equation after the wave-breaking
point. As follows from (25), before this point in the dispersionless approximation the evolution
of the pulse obeys the Hopf equation

ut − 6u2ux = 0 (71)

with the well-known solution

x + 6u2t = f (u2) (72)

where f (u2) is determined by the initial condition. At the wave-breaking point, which will be
assumed to be t = 0, the profile u2(x) has an inflection point with vertical tangent line,

∂x

∂u2

∣∣∣∣
t=0

= 0
∂2x

∂(u2)2

∣∣∣∣
t=0

= 0.

Hence, in its vicinity we can represent (72) as

x + 6u2t = −(
u2 − u2

b

)3
(73)

where ub = u(xb, tb). Note that the mKdV equation is not Galileo invariant and therefore we
cannot eliminate the constant parameter u2

b, in contrast to the case of a KdV equation (see,
e.g., [5]).

For t > 0 solution (73) becomes a multi-valued function of x. Formation of this multi-
valued region is shown in figure 2. For t � 0 we cannot neglect dispersion and have to
consider the full mKdV equation. Due to the effect of dispersion, the multi-valued region is
replaced by the region of fast oscillations which can be represented as a modulated periodic
solution of the mKdV equation (26). We rewrite this solution (see equations (65) and (66)) in
terms of the slowly varying functions ri(x, t), i = 1, 2, 3,

u(x, t) = (
√

r3 +
√

r1)(
√

r2 +
√

r1 − √
r3)√

r1 +
√

r3 − (
√

r3 − √
r2) sn2(2

√
r3 − r1θ,m)

+
(
√

r3 − √
r2)(

√
r1 +

√
r2 +

√
r3) sn2(2

√
r3 − r1θ,m)√

r1 +
√

r3 − (
√

r3 − √
r2) sn2(2

√
r3 − r1θ,m)

(74)

where

m = r3 − r2

r3 − r1
θ = x + 2s1t = x + 2(r1 + r2 + r3)t. (75)

and functions ri(x, t) are governed by the Whitham equations (69). We have to find
such a solution of these equations that the region of oscillations matches at its end points
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corresponding to m = 0 and m = 1 the dispersionless solution (73), which we rewrite in the
form

x + 6rt = −(r − rb)
3 r = u2 rb = u2

b. (76)

This means that the solution of equations (69) written in implicit form

x − vi(r)t = wi(r) i = 1, 2, 3 (77)

must satisfy the boundary conditions

v1|r2=r3 = −6r1 v3|r2=r1 = −6r3 (78)

w1|r2=r3 = −(r1 − rb)
3 w3|r2=r1 = −(r1 − rb)

3. (79)

Then, as we shall see from the results, the mean values of u will match at these boundaries the
solution of the dispersionless mKdV equation.

To find the solution (77) subject to the boundary conditions (78),(79), we shall follow
the method developed earlier for the KdV equation (see, e.g., [5]). We look for wi in a form
similar to (69),

wi =
(

1 − L

∂iL
∂i

)
W i = 1, 2, 3 (80)

and find that W satisfies the Euler–Poisson equation

∂ijW − 1

2(ri − rj )
(∂iW − ∂jW) = 0 i �= j. (81)

For our aim it is enough to know a particular solution of this linear equation W = const/
√

P(r),
where P(r) is a polynomial with zeros ri and it can be identified with polynomial (49)
taking into account equations (68). The series expansion of this solution in inverse powers
of r,

W = −4r3/2

√
(r − r1)(r − r2)(r − r3)

=
∞∑

n=0

W(n)

rn
(82)

can be considered as the generating function of a sequence of solutions

W(1) = −2s1 W(2) = 2s2 − 3
2 s2

1 W(3) = 3s1s2 − 2s3 − 5
4 s3

1 (83)

where s1, s2, s3 are the coefficients of the polynomial (49) expressed in terms of r1, r2, r3:

s1 = r1 + r2 + r3 s2 = r1r2 + r1r3 + r2r3 s3 = r1r2r3. (84)

It is easy to find that the resulting velocities

w
(n)
i =

(
1 − L

∂iL
∂i

)
W(n) i = 1, 2, 3 (85)

have the following limiting values

w
(1)
1

∣∣∣
r2=r3

≡ v1|r2=r3 − 6r1 w
(1)
3

∣∣∣
r2=r1

≡ v3|r2=r1
= −6r3 (86)

w
(2)
1

∣∣∣
r2=r3

= − 15
2 r2

1 w
(2)
3

∣∣∣
r2=r1

= − 15
2 r2

3 (87)

w
(3)
1

∣∣∣
r2=r3

= − 35
4 r3

1 w
(3)
3

∣∣∣
r2=r1

= − 35
4 r3

3 . (88)

Thus, we see that if we take

wi(r) = −r3
b − 1

2 r2
bw

(1)
i (r) + 2

5 rbw
(2)
i (r) − 4

35w
(3)
i (r) i = 1, 2, 3 (89)
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Figure 3. Dependence of the Riemann invariants r1, r2, r3 on x at some fixed value of time. The
plots are calculated according to formulae (77) with rb = 5 and t = 0.5. A dashed line represents
the dispersionless solution which matches the Riemann invariants at the boundaries x± of the
region of oscillations.

then formulae (77) satisfy all necessary conditions and define the dependence of r1, r2, r3 on
x and t in implicit form. In figure 3 we show the dependence of r1, r2, r3 on x at t = 0.5 and
rb = 5. It is clearly seen that r2 and r1 coalesce at the right boundary x+, where m = 1, and r2

and r3 coalesce at the left boundary x−, where m = 0. The dispersionless solution is depicted
by a dashed line and r1 matches this solution at x− and r3 matches it at x+.

Let us find the laws of motion x±(t) of the boundaries of the region of oscillations. At
the right boundary we have the condition

dx

dr1

∣∣∣∣
m=1

= dx

dr2

∣∣∣∣
m=1

= 0 (90)

which yields the expression

t = 12
35 r2

1 + 4
35 r1r3 + 3

70 r2
3 − 4

5 r1rb − 1
5 r3rb + 1

2 r2
b (91)

and substitution of this expression into equations (77) with r1 = r2 gives the coordinate x+

expressed in terms of the Riemann invariants r1 and r3:

x+ = 1
35

[−32r3
1 + 2r3

3 − 8r1r3(r3 − 7rb) − 8r2
1 (4r3 − 7rb) − 7r2

3 rb − 35r3
b

]
. (92)

On the other hand, this value of x+ must coincide with the coordinate obtained from the
dispersionless solution (76) with t equal to equation (91),

x+ = −6r3t − (r3 − rb)
3

= 1
35

[−72r2
1 r3 + 26r3

3 − 24r1r3(r3 − 7rb) − 63r2
3 rb − 35r3

b

]
. (93)

Comparison of these two expressions for x+ yields the relation between r1, r2 and r3 at m = 1:

(4r1 + 3r3)m=1 = 7rb. (94)

Substitution of r1 obtained from this equation into equation (91) gives

t = 3
20 (r3 − rb)

2. (95)

Hence

r3|m=1 = rb + 2
3

√
15t (96)

and again with the use of equation (94) we obtain

r1|m=1 = r2|m=1 = rb − 1
2

√
15t . (97)
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Figure 4. Dependence of coordinates x± of the boundaries of the region of oscillations on time
for the mKdV equation case.

These formulae give values of the Riemann invariants at the right boundary as functions of
time t. Their substitution into (92) or (93) yields the motion law of the right boundary

x+(t) = −6rbt + 4
3

√
5
3 t3/2. (98)

In a similar way at the left boundary x− the conditions
dx

dr2

∣∣∣∣
m=0

= dx

dr3

∣∣∣∣
m=0

= 0 (99)

yield

t = − 1
30 r2

1 − 4
15 r1r3 + 4

5 r2
3 + 1

3 r1rb − 4
3 r3rb + 1

2 r2
b (100)

which substitution into equations (77) and (76) gives, respectively,

x− = 1
5

[−2r3
1 − 32r3

3 + 8r1r3(4r3 − 5rb) + 40r2
3 rb − r3

b + r2
1 (−8r3 + 15rb)

]
(101)

and

x− = 1
5

[
6r3

1 + r2
1 (8r3 − 25rb) − 8r1r3(3r3 − 5rb) − 5r3

b

]
. (102)

Their comparison yields the relation

(r1 + 4r3)m=0 = 5rb (103)

which permits us to eliminate r3 from equation (100) to obtain

t = 1
20 (r1 − rb)

2. (104)

Hence

r1|m=0 = rb − 2
√

3t (105)

and again with the use of equation (94) we obtain

r2|m=0 = r3|m=0 = rb + 1
2

√
3t . (106)

Substitution of these formulae into (101) or (102) yields the motion law of the left boundary

x−(t) = −6rbt − 12
√

3t3/2. (107)

The plots of x+(t) and x−(t) are depicted in figure 4. To the right from x+(t) and to the left
from x−(t) the wave is described by the dispersionless solution (76). Between x+(t) and x−(t)

we have the region of fast oscillations represented by equation (75) with ri(x, t), i = 1, 2, 3,

given implicitly by equations (89). The dependence of u on x at some fixed moment of time
is shown in figure 5. It describes a dissipationless shock wave connecting two smooth regions
where we can neglect dispersion effects. At the right boundary, the periodic wave tends to a
sequence of separate dark soliton solutions of the mKdV equation and at the left boundary the
amplitude of oscillations tends to zero.
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Figure 5. The dissipationless shock wave for the mKdV equation. The parameters are equal to
rb = 5 and t = 0.5. The dashed line represents the square roots of the Riemann invariants which
match the smooth solution u(x, t) of the dispersionless equation at the boundaries of the region of
oscillations.

3.2. Dissipationless shock wave in the KdV(2) equation (38)

The theory of dissipationless shock wave for the KdV(2) equation is similar to that for the
KdV and mKdV cases. Therefore we shall present here only its main points.

The periodic solution of the KdV(2) equation has the same form as in the KdV equation
case (see, e.g., [5]),

u(x, t) = r2 + r3 − r1 − 2(r2 − r1) sn2(
√

r3 − r1θ,m) m = r2 − r1

r3 − r1
(108)

with the phase velocity

θ = x − V t V = 2s2 − 3
2 s2

1 (109)

corresponding to the second equation of the KdV hierarchy.
Now the periodic solution (108) is parametrized by the Riemann invariants ri, i = 1, 2, 3,

rather than by their squared roots, as it was in the mKdV equation case. Hence, the solution
of the dispersionless equation

ut = 15
2 u2ux (110)

near the wave-breaking point should be taken in the form

x + 15
2 u2 = −(u − ub)

3. (111)

In fact, this form is equivalent near the wave-breaking point to the solution (73), since(
u2 −u2

b

) 
 2ub(u−ub) and the constant factor can be scaled out. Formation of multi-valued
region is illustrated in figure 6. After taking into account the dispersion effects it should be
replaced by the dissipationless shock wave.

Within the shock wave we have modulated periodic solution (108) where ri are slow
functions of x and t and their evolution is governed by the Whitham equations (69) with V

defined by equation (109). Their solution subject to the necessary boundary conditions can be
found by the same method as was used in the preceding subsection. As a result we obtain

x − w
(2)
i t = u3

b + 1
2u2

bw
(1)
i − 2

5ubw
(2)
i + 4

35w
(3)
i (112)

where w
(n)
i are defined by formulae (83)–(85). Equations (112) define implicitly the

dependence of the Riemann invariants ri, i = 1, 2, 3, on x and t. The resulting plots are
shown in figure 7. At the right boundary x+ we have a soliton limit (m = 1) and at the left
boundary x− we have a wave with vanishing modulation.
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Figure 6. Formation of the multi-valued solution of the KdV(2) equation in the dispersionless
limit (110). The initial data correspond to the cubic curve x = −(u − ub)

3 (see equation (111)).
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Figure 7. Dependence of the Riemann invariants r1, r2, r3 on x at some fixed value of time for
the KdV(2) equation case. The plots are calculated according to formulae (112) with ub = −0.5
and t = 0.25. A dashed line represents the dispersionless solution which matches the Riemann
invariants at the boundaries x± of the region of oscillations.
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Figure 8. Dependence of coordinates x± of the boundaries of the region of oscillations on time
for the KdV(2) equation case.

The motion laws x±(t) can be found as in the preceding subsection, but the final formulae
now become quite complicated and we shall not write them down. The corresponding plots are
presented in figure 8. Again the region between x−(t) and x+(t) corresponds to an expanding
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Figure 9. The dissipationless shock wave for the KdV(2) equation. The parameters are equal to
ub = −0.5 and t = 0.25. The dashed line represents the Riemann invariants which match the
smooth solution u(x, t) of the dispersionless equation at the boundaries of the region of oscillations.

with time t dissipationless shock wave. It is illustrated in figure 9 where the dependence u(x)

at the fixed moment t is shown. Now at one boundary bright solitons are formed and at the
other boundary the amplitude of oscillations tends to zero.

4. Numerical analysis

The theory developed in the previous section describes the behaviour of smooth and weak
enough perturbations against the background. Such pulses can evolve towards the creation of
shock waves giving rise to oscillatory fronts, which can be interpreted as modulated periodic
waves [13]. In order to complete the theory developed, in the present section we provide
direct numerical simulations of the GDNLS equation illustrating creation and evolution of
shock waves. More specifically, we consider different kinds of shock waves occurring at
different values of the background amplitude ρ, and the constant deformation parameter
η = 0.15.

The chain is taken to be long enough, N = 2100, to ignore effects due to boundary
conditions which are taken as q0(t) = q1(t), qN+1(t) = qN(t). We take a zero derivative for
boundary points to impose that we are far enough to have a constant value of the function at
the boundary points. The initial condition in all simulations except the mKdV case was taken
as

qn(0) = ρ + 0.07 tanh(0.08n). (113)

We perform a numerical analysis for values of the parameter ρ corresponding to different
regions of figure 1.

4.1. The first KdV region

For ρ = 1, the GDNLS equation can be reduced to the KdV equation (4) and the evolution of
the initial condition (113) governed by the GDNLS equation is shown in figure 10.

At the initial stage of the evolution two step-like pulses are formed—one propagating to
the right and the other propagating to the left. We note that this is a typical situation for the
decay of a step-like pulse within the framework of the KdV equation (see, e.g., [13]). The
wave propagating to the right is a rarefaction wave and in long-time evolution it does not decay
in a train of solitons. In contrast, the left propagating wave breaks down due to nonlinear
effects at the moment about tb 
 72. After that time, oscillations appear at the wave front
which is clearly seen in the inset of figure 10(b).
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Figure 10. Evolution of the initial front perturbation with ρ = 1.44 at t = 0 (a) and t = 120 (b).
The inset in (b) shows details of the wave front after a shock develops.

This breaking time is principally due to the time needed for the initial front to evolve to a
step front. This time is proportional to the difference in the velocity of the extreme points of the
initial front �v = v(ρ = 1)− v(ρ = 0.93) = 0.108. (The initial front is composed of at least
50 discrete sites in figure 10(a) and evolves to a step front with less than 10 sites in figure 10(b).)
The shock appears at �v · tb 
 7, which means that the shock is created when there are less
than eight particles in the front.

4.2. Fifth-order KdV limit

In this case ρ = 1.44 corresponds to the line (17), and the dispersive terms differ from the
previous case and lead to weaker dispersion effects. The continuous limit corresponds now to
the fifth-order KdV equation (33).
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Figure 11. Evolution of the initial front perturbation with ρ = 1 at t = 0 (a) and t = 100 (b). The
inset in (b) shows details of the wave front after a shock develops.

Formation of a shock in figure 11 occurs after the breaking time tb 
 95. Here the
difference of velocities between the extremum points of the initial front is equal to �v = 0.068,
that is it is less than in the KdV case. Hence the breaking time is smaller.

4.3. The second KdV region

When we take ρ = 1.5 and η = 0.15, the breaking time is equal to tb 
 93 in agreement with
the difference in the velocities �v = 0.061. Now the dispersion terms are negative and we
obtain a shock in the upper part of the step-like pulse.

4.4. mKdV region

On the mKdV line (16) we take ρ = 2.23 for η = 0.15. The higher order of the nonlinearity
term in the mKdV equation compared with the one in the KdV equation case means that for a
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Figure 12. Evolution of initial front perturbation for ρ = 2.23 at time t = 0 (a) and t = 350 (b).
The insets in (b) show details of the wave front after a shock develops.

small amplitude of modulation the nonlinearity effects are weaker and the wave evolves to the
wave-breaking point followed by the formation of a shock at a later moment of time (see (20)).
To obtain the shock formation numerically, we need a sharper and stronger initial perturbation
than the one given by (113). Thus now we take

qn(0) = ρ + 0.25 tanh(0.15n). (114)

Figure 12 shows the formation of a shock after a time about tb 
 150 for the right part and
tb = 300 for the left part of the pulse. Since the mKdV equation supports bright and dark
solitons, both types can be generated during evolution of the wave. In figure 12(b) shocks
appear first on the right side as bright solitons and on the left side start to appear also as dark
solitons.
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Figure 13. Evolution of initial step perturbation for ρ = 2.5 at initial time (a) and t = 90 (b). The
inset in (b) shows details of the wave front after a shock develops.

4.5. The third KdV region

For a value of the parameter ρ = 2.5, the nonlinearity term in equation (4) changes its sign
compared with the previous cases ρ = 1 and ρ = 1.5, but the sign of the velocity in front of
the GDNLS equation (1) is still the same. Correspondingly, solitons move to the right and
shock wave is formed in the wave propagating to the right. This prediction is confirmed by
the numerical results shown in figure 13. The time-breaking point is tb = 48 in agreement
with the difference of velocities �v = 0.596.

5. Conclusion

In the present paper we have shown that the GDNLS equation with finite density boundary
conditions can be reduced, depending on the values of the parameters η and ρ, to several
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important continuous models—KdV, mKdV, KdV(2) and fifth-order KdV equations which
describe different regimes of wave propagation in the nonlinear lattice.

The evolution equations obtained by means of the multiple-scale expansion as
approximations to the GDNLS equation lead in the dispersionless limit for general enough
initial pulses to wave-breaking and small dispersion effects yield formation of dissipationless
shock waves. The shock waves display very different behaviour in different regions of the
parameters defined by the small amplitude limit. We presented numerical observations of
different types of shocks created from an initial step-like pulse. The theory of these waves is
developed in the framework of the Whitham averaging method. Analytical expressions which
describe the main characteristics of waves—trailing and leading end points, amplitudes and
wavelengths—are obtained.

The phenomena described in the present paper are not restricted to the GDNLS equation,
but are characteristic features of a large class of nonlinear Schrödinger lattices, which depend
on one or more free parameters.
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